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Design Optimization of Hip Prosthesis of
Thick Laminated Composites by Developing
Finite Element Method and Sensitivity Analysis
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An investigation has been performed to develop a finite element method for the analysis of
the behavior of complicated three-dimensional thick laminated composite structure, and the
method has been applied to the design of hip prosthesis with nonuniform cross-sections. The
developed method can accomodate the varying material properties layered within the element
and allow the ply-drop-off along the element edges. The numerical results are compared with the
analytical solution, and the results show that the number of elements can be reduced up to. 80%
within 5% error bounds by using the ply-drop-off element. A method of design sensitivity
analysis has also been developed to find the optimal ply angles minimizing the deflection of
thick laminated composite structures. The developed finited element method together with the
design sensitivity analysis has been applied to design of hip stem, and a procedure for calculat-
ing the optimum ply angle is proposed to minimize the rotational micromotion which is one of
causes of patients’ pain.

Key Words : Thick Laminated Composite, Finite Element Analysis, Design Sensitivity Analy-
sts, Hip Prosthesis

: Number of total plies in an element

Nomenclature . s
N, : Isoparametric shape function at
B : Strain-displacement matrix node g(qg=1, - , 8)
B. : Nodal strain-displacement matrix P : Vector of pressure
d : Global displacement vector Q : Stiffness matrix
de : Element nodal displacement vector Q" : Off-axis stiffness matrix of k-th ply
E : Young’s Modulus Q : On-axis stiffness matrix
F : Global force vector T : Transformation matrix from on-
fe : Element nodal force vector axis to off-axis coordinates
G : Transformation matrix from global  x, y, 2 : Cartesian coordinate
to off-axis coordinates X Xoe vz Off-axis cartesian coordinate
J : Jacobian matrix of an element X, v. 2 ! On-axis cartesian coordinate
J* : Jacobian matrix of k-th ply of an Xa» Vas 2a - Cartesian coordinates of node ¢4
element Greek Letters
K : Global stiffness matrix .
Ke° : Element stiffness matrix & + Element strain vector
m : Number of total elements 4 + Layup angle of each p_l‘y
En & : Element natural coordinate
* Department. of. Mechanical Engineering, £% u* ¢* : Sub-natural coordinate
Hanyang University .
** Department of Mechanical Design and Produc- £ar 7o Lo+ Natural coordinate of node
tion Engineering, Graduate School, Hanyang &a*s 14", &*: Sub-natural coordinates of node
University Vs Vyar Vax - PoOlsson’s ratio
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Superscripts

e . e-th element

k . k-th ply number in an element

T : Transposition of matrix
Subscripts

a : Node number in an element

b : Number of design variables

Y. Vs 2 : Cartesian coordinate

1. Introduction

The majority of the patients receiving total hip
replacement suffer from serious continuous pain
mainly due to the loosening and stress shielding
effects leading to femoral failure (Huiskes, 1991 ;
Callagan, et. al., 1992 ; Crowninshield, et. al,,
1981). Those effects result from the micromotion
and migration of the hip stem from its original
position within the femur. The quest to avoid the
implant/bone motion has led to numerous femor-
al component design variations including altera-
tions in component geometry, consitituent mate-
rial properties and cementless hip replacement.
The study on design features of the hip prosthesis
shows that the external geometry, i.e., stem length,
component shape and surface texture are extreme-
ly crucial to the acute stability of the fixation.

The loosening and stress shielding effects can
be adjusted according to the material properties
of the hip prosthesis as well as its geometry. Since
metallic alloys, i.e., Titanium alloy and Cobalt-
Chrome alloy, etc., have been used for the mate-
rials, the stiffness of the stem can not be adjusted
without changing the geometry. The composite
layered hip stem has been thus proposed and
widely under investigation mainly because the
stiffness can be altered by changing the ply orien-
tations even with the given geometry (Skinner,
1988). In order to determine the ply orientation
for the best stiffness, the behavior of the compos-
ite hip stem implemented in the femur has to be
analyzed.

The finite element analysis (FEA) has been
.widely used to evaluate the response of the hip
stem made of metallic alloy (Huiskes, 1991 ;

Crowninshield, et. al., 1981). The full analysis of
the layered composite hip stem using the conven-
FEA, however,
computing time and memory space since the

tional requires an enormous
material properties are varying through the thick-
ness and numbers of elements are, thus, required
as many as the ply numbers. Hence, a three-
dimensional element for FEA is needed which
can handle the varying materials inside the ele-
ment (Chang, et. al., 1990; Lee, 1980). In addi-
tion to that feature, the element should also allow
the ply-drop-off along the element edges such that
the complicated three-dimensional structure can
be accurately modelled. A methodology for FEA
is developed, in this study, to analyze the behav-
ior of three-dimensional complicated structures of
laminated composites with ply-drop-off on its
sides.

An optimization procedure together with the
FEA has been also used to obtain better design of
the hip stem (Huiskes, 1991 ; Boeklagen, et. al.,
1989). Those investigations are, however, focused
mainly on the shape optimization of the metallic
alloy. The design sensitivity analysis for the three-
dimensional laminated composite structures is
now developed for the stiffness optimization to
find the optimal ply orientations minimizing the
deflection of the structure, and applied to the hip
stem for minimization of the circumferential dis-
placement of the total hip prosthesis which is
related to the micromotion causing the patients’
pain.

2. Statement of the Problem

The total hip prothesis is composed of stem,
acrylic cement, cancellous bone, and cortical bone
surrounding the stem as shown in Fig. 1. Because
the center of gravity of the body is posterior to the
axis of the joint, the loads are applied to the head
of the stem not only in the frontal plane (in-
plane), but also in the sagittal plane (out-of-
plane) causing the axial, bending, and torsional
effects to the hip prosthesis (Huiskes, 1991 ;
Callaghand, et. al., 1992). The critical micromo-
tion causing the loosening or stress shielding
effect is mainly due to the rotational motion
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caused by the out-of-plane force acting on the
stem head (Fig. 1). The stem is, thus, to have an
adequate stiffness to reduce the rotational mi-
cromctions. The optimal layup angles are to be
determined to obtain the optimal stiffness of
composites.

For an optimum design formulation based on
the above statement, the circumferential displace-
ment /, of the total hip prosthesis in the medial-
proximal region (A) in Fig. 1 is thus chosen to be
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4y £y :out-of-plane angle
posterior anterior
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Fig. 1
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Fig. 2 The procedure of calculating optimal ply angle #

using FFA and optimization

the cost function to be minimized. The ply angles
are taken to be the design vartables to be found.
The formulation for the structural optimum
design of the total hip prosthesis is written as

follows :

Cost Function : g, at the medial-proximal
interface
Design Variables: @, &, -+ , G
In oder to find the optimum ply angles, the
finite element method which can analyze the thick
laminated composites and the design sensitivity
analysis are used. The analysis procedure in this
study is shown and explained in Fig. 2.

3. Analytical Theory

3.1 Development of multilayered brick ele-
ment for FEA

A three-dimensional fintte element code for the
laminated composite structure is developed based
on the variational principle. An eight-node, 24
degrees-of-freedom brick element that have the
multilayered ply-drop-off along the element edges
is developed in order to take care of the variation
of the material properties in an element. As will
be demonstrated, the element can reduce consider-
ably the amount of memory space and run time
required to analyze the three-dimensional behav-
ior of composites.

The three-dimensional displacements ¢ within
an element using the eight-node brick element
shape functions are expressed as

d= 3 N d, (1)

where d, are the nodal displacements which have
3 degrees of freedom (d.. d,. d.) at each node (g
------ , 8) as shown in Fig. 3. N, are the
isoparametric shape functions at node « and can
be written in the natural coordinates (£, 7, ¢) as

;4 - .

Ni=(1 =50 -0 -0)

|

Ne=g (14 81 = )1 =)

1 «

Ny= - T+ 2+ )1 —=£)

1\/4?'"8(1-5)(I+77)(1*§')



4 Sung Kyu Ha and Jae Youn Jeong

&

&=1

S

}_\

5

(a) Ply drop-off element and global coordinate
system

(b) Lay up sequence in natural coordinate sys-
tem (£, 7. §)

(c) K-th layer in sub-natural coordinates (£", »*,

&)

Fig. 3 Mapping of a multilayered brick element into the

natural and sub-natural coordinates for calcula-
tion of the element stiffness matrix

No= (1= &1 =1+
No=¢(1+&)1—7)(1+)
Ny=g 1+ 0+ +8)
Ne=-g (=1 + 71+ ) @)

Using the strain-displacement relationship and
Eq. (2). the element strain is written as

8
=3 Bad, (3)

The matrix B, is defined as

(Nax O 0 |
0 N,, O
0 0 Nav.
0  Naz Nay

Na: 0 Nax

| Ny Naox O i

B.= (4)

where ¢ is the nodal number of the element.

Based on the standard finite element procedures
as explained by Hughes (1987), the equilibrium
equation of the element can be expressed in terms
of the nodal desplacements d ¢ as

KL’ d(_': f@ (5)

where f¢is the element nodal force vector. K¢ in
Eq. (5) is the element stiffness matrix written as

Ke:ﬁ[:ﬁBTQBmdgdndg (6)

where the strain-displacement matrix B consists
of the matrix B, in Eq. (4), and @ is the three-
dimensional stiffness matrix within the element.
The superscript 7" denotes transposition. J in Eq.
(6) is the jacobian matrix defined as

Xee Xop Xor
J=|v.e Vo Vot (N
Zog Zon st

To evaluate the determinant of the jacobian
matrix, the relationships between the global coor-
dinates (v, y. z) and the natural coordinates (£,
7, &) of the element are used as follows

8
x:(zzl Na(i‘fv 75 C)Xa
8
y:zl J\/va(é, 7, é’)ya
8
2= 2} NAE, 7, Oaa (8)
where x,. v, and z, are the global coordinates of
the node ¢ of the element.

The three-dimensional stiffness matrix @ in Eq.
(6) varies within the element as shown in Fig. 3.
To account for the variation of the material
properties, the element stiffness matrix in Eq. (6)
is calculated by separately integrating each layer
and summing up all the integrations as follows

k=3[ [ [ B" Q" BlLIIJ" | ds*andc*
)

where % indicates the ply number, and # is the
number of the layered plies within the element.
Q" in Eq. (9) is the three-dimensional off-axis
stiffness matrix of A-th layer calculated by trans-
forming the on-axis stiffness @. The off-axis and

Fig. 4 Illustration of the on-axis { ¥, y, z), off-axis (x;,
vz vy) and global coordinate system (v, y, z)

within a element
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on-axis coordinates are illustrated in Fig. 4. The
nonzero components of the three-dimensional
off-axis stiffness Q% are derived and shown in
terms of @ in Appendix and expressed in
multiple-angles as following

Qu: l[l + l]z cos2 0+ (/Tq cosd §

Qu=U,— U, cos2 §+ U cosd 4
Qu=U,— Us cos4 0
Qos= Us— U; cosd g

QIG:—;— U, sin2 @+ (5 sind 4

Q%:% Uy sin2 — Uy sind ¢
Qus= Us+ U; c0s2 ¢

Qu=Us— Urcos2 ¢

Q= U, sin2 4

Qua= Us+ Uscos2 4

Qss= Us— Uscos2 g

Qus=—Ussin2 ¢

Q33: U (10)

where [J,(;=1, 2, .- , 10) are the linear combi-
nations of on-axis stiffness moduli. The compo-
nents of [/, and @, in Eq. (10) are difined in
Appendix. The first 6 equations are the same as
those derived by Tsai (1988), As will be shown,
the derivatives of ¢,; with respect to the ply angle
¢ are ecasily performed using Eq. (10).

The region of the A-th layer in the natural
coordinates (£, 5, £) is again mapped onto the
domain in the sub natural coordinates (£*, p*, {
as shown in Fig. 3. The new jacobian matrix J*
is defined as

~ o =
ook & xS gk

s er N> ge 1) gk
Eoon §oge & o

Jh= (1)

To evaluate the jacobian matrix in Eq. (11), the
relationships between the natural coordinates (£,
7, &) of the element and the A-th sub-natural
coordinates (&%, p*, {*) are used, i.e,

=3 Nu& 7t E9El
éN (&% 9" s
c:é Nul£" 7% €8k (12)

Where £, 7% and ¢4 are the coordinates of the

corner g of k-th layer in the natural coordinate
system (Fig. 3), and N, are the shape functions
defined in Eq. (2). When the nodes I, 2, 3, and 4,
and the nodes S, 6, 7, and 8 are located in the
same ply interfaces., respectively, the element has
no ply-drop-offs on top and bottom surfaces and
the determinant of J* in Eq. (I1) is reduced to
t*/h as proposed by Lee (1980) and Chang. et.
al., (1990) where #* is the thickness of 4-th ply
and / is the total thickness of the element.

As shown in Eq. (12), in order to evaluate the
element stiffness matrix K¢ in Eq. (9), the coordi-
nates &%, »4, and ¢ are needed in addition to the
conventional data, i.e., the nodal coordinates,
element connectivities and material properties.
After conventional mesh generation, the ply inter-
face numbers where the nodes are located are
automatically calculated in this study using the
data of the layup sequence; at each node, the
normal distance is calculated from the node to the
reference suface which is represented by the first
ply. Using the ply interface number of each node,
the number of layered plies » within each element
and the coordinates of the corner g4 of k-th layer
&k k. &k, and the determinant of J* are can be
dutomatlcally calculated.

3.2 Design sensitivity analysis

The sensitivity of the cost function (displace-
ment in this study) with respect to the design
variables ¢, can be calculated using the global
equilibrium equation expressed in terms of dis-
placements which is obtained through the finite
element formulation from the element stiffness
matrix and force vector in Eq. (5), i.e.,

Kd=F (13)
where d is the global displacement vector, and K
and F are the global stiffness matrix and force
(13), the global stiff-
ness matrix K is expressed by the element stiffness
matrix K¢

vector, respectively. In Eq.

and the transformation matrix G°¢

from global to off-axis(element) coordinates
shown in Fig. 4.
K:iﬁeZl(G")TK"GP (14)

m in Eq. (14) indicates the number of the total
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elements.

The derivative of the displacement d
respecct to the design variables g%(;=1, 2, ----- s
b) are calculated using Eq. (13) where F' is
independent of ¢, i, e,

od . 0K

FE S T (15)
oK _ oK

36,

I}

Z eT e
G T G

Since Eq. (16) is the same as the global stiffness
matrix K with Q* replaced with 9Q*/30; in the
element stiffness matrix, the assembly of the ele-
ment matrix in Eq. (16), hence, use the same
procedure as the conventional finite element
method. Using the transformation of the stiffness
matrix expressed in multiple-angles in Eq. (10),
where [J; are independent of the ply angle ¢,
0Q*/ 36, in Eq. (16) can be calculated and expres-
sed in terms of the off-axis stiffness Q*.

Q;l: “4Q16

Qé2:4Q26

Qizzz( Qw* st)
Qészz( Qm_ Qze)
Qie;:Qn_le-zQse
Qéfs: —Qnt Q12+2Q66

Q£3 =-2 Q36

Qz% =2 Qaa

Qés: Gz — st

Q;4 =2 Q45

Qés =—2 Q45

Qis = st - Q44

Q=0 (1n

In Eq. (17), the prime indicates the derivative of
Q* with respect to 4,.

4. Numerical Verification
of the Analysis

4.1 Verification of finite element code

A three-dimensional finite element program
“HUSAP” with pre- and post-processor is devel-
oped based on the theory presented in Sec. 3. In
order to verify the finite element code and analy-

e S [ 20" )
(G2 le2=1./:1./—-1,/:1 B’ 7@%; B|J | J*|derdy de G

In order to evaluate Eq. (15), in each step of
optimization, the displacement ¢ and stiffness
matrix K are calculated by solving Eq. (13). The
derivative of the stiffness with respect to the
design variables ¢, in Eq. (15) are calculated
using Eq. (9) and Eq. (14) where ¢ is indepen-
dent of 4; ie.,

(16)

sis, calculations were performed and compared
with the existing analytical solutions.

As a verification, the deflections and stresses of
0.lm long and 0.002m wide angle ply [0/90],

P=Posin(mx/!) P
Gﬂ AAA AAA
. [ cutting plane
) gp K h
y 2y

< ‘ > >

(a) Calculation of the tractions along the cutting
plane in the angle ply [0/90],, laminate

T,

A

(b) Ply drop-off model subjected to the tractions

along the cutting plane
'k.
:D

(¢) The element meshes used to analyze the ply
drop-off model
Fig. 5 Verification model for ply-drop-off element
1-20.1m w=0.002m h=0.0102m

ply thickness=0.000127 m P,=10N
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laminate are calculated. The laminate is subjected
e
/
and simply supported at the ends as shown in Fig.
5(a). The number of sub-laminate 7 is chosen to
be 40, i.e., 80 plies total. The exact solutions of
displacements and stresses can be obtained using
the method presented by Pagano (1969). In order
to consider the ply-drop-off, a structure which has

to pressure f(x, y)= p, sin = x on the top surface

a cutting plane is analyzed as shown in Fig. 5(b).
It has 40 plies in the right side. The applied loads
on the top surface were calculated from the above
exact solution along the corresponding cutting
plane. Hence, the displacements and stresses of
the structure with the cutting plane are the same

Fig. 6. The required node numbers, computing
time and accuracy for each case are also summar-

ized in Table 1.

As shown in Fig. 6, and Table 1, the calculated

y

3 b
X {on-axis)
8 x {off-axis)

(a) Cantilevered

F = 1 kN/m
A

all clamped at x =
Layup ((8,/8;)20,1;
ply thickness = 0.00025 m

plate subjected to the uniformly

distributed end loads

. . . -4
as the above exact solution of the structure with- 0 (le(;) )
out the cutting plane. Three different element s 06,
numbers, 1.e., 40 (case 1), 10 (case 2) and 5 (case 40 + T 18
3) are considered through the thickness for FEA 30 4 L6
using the ply-drop-off elements. The considered 2
numbers of elements in x and y-direction are 20 7 201 TS
and I, respectively. The displacement , and %, 10 4 L 12 o
stress ¢, at the bottom surface are calculated and 2 nd, g

- - . 2 o4 10 §
compared with the exact solution as shown in E) =
8 -10 1 -85
(1011 . X 3
16 20 — 20 + + 6 5
14 4 0 >
/E\ 12 » exact (displacement) Ny / i -30 4
g oo 1\ S ooy 17 0
§ s | \ © case 3 § clements) 10 40 4 © 1 {1 2
| B e T -50 ol y ; + 0
3 [ £ a2 (10 cemence \ Lo 1 5 9 13 17 21
5 2 \{ 10 fteration number
Too ( ] (b) The value of vertical displacement d, and ply
2 0 002 0.08 0.06 008 017120 angles #,, §, with respect to the iteration
X (m) numbers
Fig. 6 Comparision of the numerical calculations and Fig. 7 Verification model and numerical results for
the exact solutions design sensitivity analysis
Table 1  Comparision of the numerical caculations and the exact solutions
= T T ) : = T
case l no. of no. of C. P U time max. displacement max. stress
: of PC-486 |— —_
ne ‘ nodes elements (min : sec) value error value error
exact | 1.5E-10 -112.5
case | i 1722 800 2:05.94 1.5E-10 0.49% -109 3.12%
case 2 1 462 200 1:07. 40 1.4E-10 2.51% -108 4.01%
case 3 ] 252 100 1:10.09 I 4E-10 2.79% L -108 401%
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Table 2 Material properties of stem, cement and bone components
Material unit T300/976 Acrylic Cancellous Cortical
property (Graphite/Epoxy) cement bone bone
Exx GPa 176.00 2.07 0.3246 17.00
Eyy=Ezz GPa 11.10 2.07 0.3246 17.00
Exy=Exz GPa 7.65 0.90 0.1258 3.28
Eyz GPa 427 0.90 0.1258 3.64
Vxy=Vxz 0.3 0.19 0.29 0.46
Vyz 0.3 0.19 0.29 0.58

displacements and stresses using the multi-layered
ply-drop-off element are matching very well with
the exact solution. In addition, node numbers or
computing memory can be significantly saved
without sacrificing the accuracy by using the
ply-drop-off elements.

4.2 Verification of design sensitivity

analysis

In order to verify the design sensitivity analysis,
the optimal ply angles of the cantilevered laminat-
ed plate are searched using the verified finite
element code and the design sensitivity analysis.
The initial layup is taken as [(—50/50),,]s, and
the ply thickness is 0.00025m. The plate is
clamped at x=0 and subjected to the uniformly
distributed and loads F=1kN/m as shown in
Fig. 7(a), and the material properties of the com-
posites (T300/976) are shown in Table 2. The
cost function is the z-directional displacements at
the center of the free end.

As a result, the values of design variables 4, 4,
and the cost function ¢/, are obtained and plotted
with respect to the iteration as shown Fig. 7(b).
The values of g, and ¢, are, as expected, conver-
ged to zero degrees after about 20 iterations.

5. Results and Discussion

A numerical calculation is performed using the
developed finite element program together with
the optimization module developed by Vander-
plaats, 1985, where the design sensitivity is carried
out using Eqs.(13)~(17).

The total hip prosthesis of length 0.193m is

the generated finite element
The numbers of

considered and
meshes are shown in Fig. 1.
generated nodes and elements are 1827 and 1440,
respectively. The node for minimizing the circum-
ferential displacement 1s selected at medial-
proximal interface between stem and cement as
indicated (A) in Fig. 1. The composite material
used for the hip stem in this study is Graphite/
Epoxy Fiberite T300/976, and its material prop-
erties are shown in Table 2. The layup sequence
is chosen to be [(8/&)ns]s. where two indepen-
dent ply angles are considered and y indicates the
number of ply group. Acrylic cement and cancel-
lous bone are isotropic, and cortical bone is
assumed to the transversely isotropic as studied in
Huiskes (1991), Crowninshield, et. al. (1981) and
Vichnin, et. al. (1986). The material properties of
these cement and bone components are also
shown in Tale 2. The contact forces acting on the
head during the gait are ranging from 3 to 5 times
the body weight (Huiskes, 1991). As reported by
Crowninshield, et. al. (1981) and Davy, et. al.
(1988) in-plane and out-of-plane angles of the
force are ranging from 10 to 20 degrees and O to
35 degrees, respectively (Fig. 1). For a numerical
calculation, a force of 1,620 N corresponding to 3
times of 55kg person is, hence, applied to hip stem
model with in-plane angle {5 degrees and out-of-
plane angle 5 degrees, respectively (Fig. 1).

The optimum ply angle is calculated using the
procedure explained in Fig. 2 with the initial
layup sequence {(15/15)35.],. The calculated val-
ues of circumferential displacement ¢/, and ply
angles @,, ¢, with respect to the iteration numbers
are shown in Fig. 8. The minimum circumferen-
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tial displacement and corresponding layup angles
are obtained as [.98 x 10 *m and —29.0, —31.0
degrees, respectively, at a iteration number 18
(Fig. 8). The optimal layup sequence in this study
to minimize the micromotions between stem and
bone can thus be written as [(—29/—31),], of
the total hip prosthesis considered. The deflection
curve of the layup sequences [(—29/—31);,]¢ is

Layupangles (degree)

1 4 7 10 13 16 19
Iteration number
Fig. 8 The values of circumferential displacement /,
and ply angles §,. ¢, with respect to the iteration
numbers

01

0.08 .‘r
0.06 .\.

004 -

o 10-29/ 31 Yl
0 1(29/31 )35,
® (29731 )l

002 -

x (m)
<
e e S

002 2

004 L J
-0.06
0.08 A+
G 5 10 15 20 25 30 35 40 45 50
x10-5)

Circumferental displacement (m)

Fig. 9 Comparison of the circumferential displacements

dy of 3 different layups

compared with other layup sequences [(29/—
31)s5. s and [(29/31)35,], as shown in Fig. 9.
The result shows that the circumferential deflec-
tion of the composite hip stem subjected to not
only the vertical force but also the circumferential
force can be minimized using the unbalanced
layup sequence. In other words, the positive
deflection due to the circumferential component
of the force is offset by the negative deflection
caused by the unbalanced laminate subejcted to
the vertical component of the force. In this study,
the optimal ply angles of [( 4,/ fh)ns]s are searched
in order to minimize the displacement, but the
different optimal ply angles could be obtained
with the different angle sequences. The methods
for the shape and strength optimization as well as
the stiffness optimization can be also developed
for the three-dimensional structure of the laminat-
Most importantly,
strength as well as the displacement of the struc-

ed composite materials.

ture can be also either a cost function or a con-
straint function. The disign sensitivity analysis
developed in this study should be then extended
to include the sensitivity of the stresses with
respect to the ply angles.
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APPENDIX : Transformation
of the Stiffness Matrix Q

The off-axis stresses can be expressed in com-
pact matrix form using symmetry of stresses and
contracted notation.

on 012 013 01 Os Os
[o]=!0n 0» Ous|=|0s 02 04
O31 O3z Os3 Os 04 O3

(A1)

The contracted stress matrix in Eq. (Al) is arran-
ged as a column vector

{(7}:{01 02 O3 O Os OS}T (A2)

and the off-axis strains can be also expressed
using a contracted notation

{5}:{511 €12 €33 2623 261 2612}T (A3)

={e, & & & & €&}’

The relationship between stresses and strains

are expressed as following

(o3} rQu Q12 Q13 0 0 QIB—‘ &1
02 Q2 Q2 Qu 0 0 Qx|e
03 @ Q2 Qss 0 0 Qs | €3

= A4
04 0 0 0 Q44 Q45 0 &4 ¢ )

05 0 0 0 Qs s 0 E&s
Js »QGI Qaz Qea 0 0 Qse_ &
where ,; is obtained by transforming the on-axis

stiffness @,;. Using s for sin 9 and ¢ for cos @, the
components of the off-axis stiffness @, are

Qu :s“@ + c'4@7+2s2cz(@+2@§;)
Q22284 Qn + (:45)22 +2SZﬂQ12 + 2@1;)
Qr=(s"+ D Qut+ 2 Qi+ Qu—4Qes)

+ Qi — @iz —2 Qes)
Qze = S%‘(@T? - @;~ 2@)

+ 5 (Qra— Q2 Qo)
Q3= Qs+ c* Qs
Q23:32@;;+ 6‘2@;{

QM = c”@; + 82@
Qs5=5"Qus + c*Qss
@Fgﬁ@s{—@l})
Qs = Qss

Eq. (AS) is expressed in multi-angles as in Eq.
(10) where [, are defined as

(A35)
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