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Design Optimization of Hip Prosthesis of
Thick Laminated Composites by Developing

Finite Element Method and Sensitivity Analysis
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An investigation has been performed to develop a finite element method for the analysis of

the behavior of complicated three-dimensional thick laminated composite structure, and the

method has been applied to the design of hip prosthesis with nonuniform cross-sections. The

developed method can accomodate the varying material properties layered within the element

and allow the ply-drop-off along the element edges. The numerical results are compared with the

analytical solution, and the results show that the number of elements can be reduced up to 80%

within 5% error bounds by using the ply-drop-off element. A method of design sensitivity

analysis has also been developed to find the optimal ply angles minimizing the deflection of

thick laminated composite structures. The developed finited element method together with the

design sensitivity analysis has been applied to design of hip stem, and a procedure for calculat­

ing the optimum ply angle is proposed to minimize the rotational micromotion which is one of

causes of patients' pain.

Key Words: Thick Laminated Composite, Finite Element Analysis, Design Sensitivity Analy­

sis, Hip Prosthesis
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Nomenclature ---

B Strain-displacement matrix

s, Nodal strain-displacement matrix

d Global displacement vector

de Element nodal displacement vector

E Young's Modulus

F Global force vector

t" Element nodal force vector

G Transformation matrix from global

to off-axis coordinates

J : Jacobian matrix of an element

r: : Jacobian matrix of k-th ply of an

element

K Global stiffness matrix

K" Element stiffness matrix

m Number of total elements
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The majority of the patients receiving total hip

replacement suffer from serious continuous pain

mainly due to the loosening and stress shielding

effects leading to femoral failure (Huiskes, 1991 ;

Callagan, et. al., 1992; Crowninshield, et. al.,

198\). Those effects result from the micromotion

and migration of the hip stem from its original

position within the femur. The quest to avoid the

implant/bone motion has led to numerous femor­

al component design variations including altera­

tions in component geometry, consitituent mate­

rial properties and cement less hip replacement.

The study on design features of the hi p prosthesis

shows that the external geometry, i.e., stem length,

component shape and surface texture are extreme­

ly crucial to the acute stability of the fixation.

The loosening and stress shielding effects can

be adjusted according to the material properties

of the hip prosthesis as well as its geometry. Since

metallic alloys, i.e., Titanium alloy and Cobalt­

Chrome alloy, etc., have been used for the mate­

rials, the stiffness of the stem can not be adjusted

without changing the geometry. The composite

layered hip stem has been thus proposed and

widely under investigation mainly because the

stiffness can be altered by changing the ply orien­

tations even with the given geometry (Skinner,

1988). In order to determine the ply orientation

for the best stiffness, the behavior of the compos­

ite hip stem implemented in the femur has to be

analyzed.

The finite element analysis (FEA) has been

widely used to evaluate the response of the hip

stem made of metallic alloy (Huiskes, 1991;
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Superscripts

e-th element

k-th ply number in an element

Transposition of matrix

Subscripts

Node number in an element

Number of design variables

Cartesian coordinate

1. Introduction

Crowninshield, et. al., 198\). The ful1 analysis of

the layered composite hip stem using the conven­

tional FEA, however, requires an enormous

computing time and memory space since the

material properties are varying through the thick­

ness and numbers of elements are, thus, required

as many as the ply numbers. Hence, a three­

dimensional element for FEA is needed which

can handle the varying materials inside the ele­

ment (Chang, et. al., 1990; Lee, 1980). In addi­

tion to that feature, the element should also allow

the ply-drop-off along the element edges such that

the complicated three-dimensional structure can

be accurately model1ed. A methodology for FEA

is developed, in this study, to analyze the behav­

ior of three-dimensional complicated structures of

laminated composites with ply-drop-off on its

sides.

An optimization procedure together with the

FEA has been also used to obtain better design of

the hip stem (Huiskes, 1991; Boeklagen, et. al.,

1989). Those investigations are, however, focused

mainly on the shape optimization of the metallic

alloy. The design sensitivity analysis for the three­

dimensional laminated composite structures is

now developed for the stiffness optimization to

find the optimal ply orientations minimizing the

deflection of the structure, and applied to the hip

stem for minimization of the circumferential dis­

placement of the total hip prosthesis which is

related to the micromotion causing the patients'

pain.

2. Statement of the Problem

The total hip prothesis is composed of stem,

acrylic cement, cancellous bone, and cortical bone

surrounding the stem as shown in Fig. 1. Because

the center of gravity of the body is posterior to the

axis of the joint, the loads are applied to the head

of the stem not only in the frontal plane (in­

plane), but also in the sagittal plane (out-of­

plane) causing the axial, bending, and torsional

effects to the hip prosthesis (Huiskes, 1991;

Callaghand, et. al., 1992). The critical micromo­

tion causing the loosening or stress shielding

effect is mainly due to the rotational motion
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3. Analytical Theory

the cost function to be minimized. The ply angles

are taken to be the design variables to be found.

The formulation for the structural optimum

design of the total hip prosthesis is written as

follows:

Cost Function: d; at the medial-proximal

interface

Design Variables: 8b 82, ...... , 8"

In oder to find the optimum ply angles, the

finite element method which can analyze the thick

laminated composites and the design sensitivity

analysis are used. The analysis procedure in this

study is shown and explained in Fig. 2.

3.1 Development of multilayered brick ele­
ment for FEA

A three-dimensional finite element code for the

laminated composite structure is developed based

on the variational principle. An eight-node, 24

degrees-of-freedom brick element that have the

multilayered ply-drop-off along the element edges

is developed in order to take care of the variation

of the material properties in an element. As will

be demonstrated, the element can reduce consider­

ably the amount of memory space and run time

required to analyze the three-dimensional behav­

ior of composites.

The three-dimensional displacements d within

an element using the eight-node brick element

shape functions are expressed as

where d; are the nodal displacements which have

3 degrees of freedom (dx , d.; dJ at each node (a

= I, 2, ...... , 8) as shown in Fig. 3. N a are the

isoparametric shape functions at node a and can

be written in the natural coordinates (~, rj, t) as

N, = -~-( I - ~)( I -- 77 )( I - S)

N2c:-~-( 1+ O(1-77)( 1- t)

N, ,= {( I + ~)( I + 77)( I - t)

N, =-~ ( I - ~) ( 1+ 77)( 1- n

I
'compositestem

:it~i:i'~ acrylic cement

* s
cancellous bone

cortical bone

n I in-plane angk
n 2 our-of-plane angle

Yes

e : layup angle

No

-{--UP~~~~~Angle~
The procedure of calcnlating optimal ply angle 0
using FFA and optimization

Fig. 2

~ /

The FE model of total hip prosthesis, the d irec­

tions of loading and the constituent materials

caused by the out-of-plane force acting on the

stem head (Fig. I). The stem is, thus, to have an

adequate stiffness to reduce the rotational mi­

cromotions. The optimal layup angles are to be

determined to obtain the optimal stiffness of

composites.

For an optimum design formulation based on

the above statement. the circumferential displace­

ment dy of the total hip prosthesis in the medial­

proximal region (A) in Fig. I is thus chosen to be
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where the strain-displacement matrix B consists

of the matrix B; in Eq. (4). and Q is the three­

dimensional stiffness matrix within the element.

The superscript T denotes transposition. J in Eq.

(6) is the jacobian matrix defined as

where Xa' Ya. and Za are the global coordinates of

the node a of the element.

The three-dimensional stiffness matrix Q in Eq.

(6) varies within the element as shown in Fig. 3.

To account for the variation of the material

properties. the element stiffness matrix in Eq. (6)

is calculated by separately integrating each layer

and summing up all the integrations as follows

To evaluate the determinant of the jacobian

matrix. the relationships between the global coor­

dinates (x. y. z) and the natural coordinates (~.

T}, S) of the element are used as follows

where k indicates the ply number. and n is the

number of the layered plies within the element.

Qk in Eq. (9) is the three-dimensional off-axis

stiffness matrix of k-th layer calculated by trans­

forming the on-axis stiffness Q. The off-axis and

(5)

(3)

(4)

(2)

k=l
k=2

4 - - __

k: (a)

I
N5=S( I - ~)( 1- T})( 1+ S)

N6=+(1 +~)(I- T})(I + S)

N7 = -}( I + ~)( I + T})( I + S)

NH=-~-( 1- ~)( 1+ T})(1 + S)

H

€e= ~ s, a,
a=l

The matrix B; is defined as

iVa. x 0 0
0 n., 0

0 0 u.,
Ba =

0 u., u.,
N a .z 0 lVa.x

s.; iVa,x 0

(a) Ply drop-off element and global coordinate

system

(b) Lay up sequence in natural coordinate sys­

tem (.;, I), n
(c) K-th layer in sub-natural coordinates (';'" r/,

S-'l

Fig. 3 Mapping of a multilayered brick element into the

natural and sub-natural coordinates for calcula­

tion of the element stiffness matrix

where a is the nodal number of the element.

Based on the standard finite element procedures

as explained by Hughes (1987). the equilibrium

equation of the element can be expressed in terms

of the nodal des placements de as

Using the strain-displacement relationship and

Eq. (2). the element strain is written as

where t" is the element nodal force vector. K" in

Eq. (5) is the element stiffness matrix written as

Fig, 4 Illustration of the on-axis Lt'. .v- z ), off-axis (XI.

x,. x:;) and global coordinate system (v. .v- z)

within a element
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3.2 Design sensitivity analysis
The sensitivity of the cost function (displace­

ment in this study) with respect to the design

variables fJ, can be calculated using the global

equilibrium equation expressed in terms of dis­

placements which is obtained through the finite

element formulation from the element stiffness

matrix and force vector in Eq. (5), i.e.,

corner a of k-th layer in the natural coordinate

system (Fig. 3), and N; are the shape functions

defined in Eq. (2). When the nodes 1,2,3, and 4,

and the nodes 5, 6, 7, and 8 are located in the

same ply interfaces, respectively, the element has

no ply-drop-offs on top and bottom surfaces and

the determinant of J" in Eq. (II) is reduced to

t k
/ Ii as proposed by Lee (1980) and Chang, et.

a!', (1990) where t" is the thickness of !,-th ply

and h is the total thickness of the element.

As shown in Eq. (12), in order to evaluate the

element stiffness matrix K" in Eq. (9), the coordi­

nates ~~, r;~, and !;}; are needed in addition to the

conventional data, i.e., the nodal coordinates,

element corinectivities and material properties.

After conventional mesh generation, the ply inter­

face numbers where the nodes are located are

automatically calculated in this study using the

data of the layup sequence; at each node, the

normal distance is calculated from the node to the

reference suface which is represented by the first

ply. Using the ply interface number of each node,

the number of layered plies n within each element

and the coordinates of the corner a of k-th layer

e: r;g, !;~', and the determinant of P are can be

automatically calculated.

on-axis coordinates are illustrated in Fig. 4. The

nonzero components of the three-dimensional

off-axis stiffness Qk are derived and shown 10

terms of (j in Appendix and expressed in

multiple-angles as following

Qll = [II + [12 cos2 0 + [I, cos4 e
Q22= [11- U2 cos2 e+ [A cos4 e
Q12= [14- [13 cos4 e
Q66= US - [13 cos4 0

QI6=+ U2 sin2 0 + U3 sin4 e
I . 2 . 4

Q26=2 U2 SIO e- U3 SIO e
Q13= [16+ U7 cos2 e
Q23= V6- U7 cos2 e
Q36= V7 sin2 e
Q44= VB + U9 cos2 e
Qss= V8- [19 cos2 e
Q4S= - U9 sin2 e
Q33= V IO (10)

where UJi=l, 2, ······,10) are the linear combi­

nations of on-axis stiffness moduli. The compo­

nents of U, and Qu in Eq. (10) are difined in

A ppendix. The first 6 eq uations are the same as

those derived by Tsai (1988), As will be shown,

the derivatives of Qu with respect to the ply angle

e are easily performed using Eq. (10).

The region of the k-th layer in the natural

coordinates (~, 71, !;) is again mapped onto the

domain in the sub-natural coordinates (e, n" n
as shown in Fig. 3. The new jacobian matrix J"

is defined as

( II )

Kd=F ( 13)

(14)

To evaluate the jacobian matrix in Eq. (II), the

relationships between the natural coordinates C;:,
71, Sl of the element and the k-th sub-natural

coordinates (~", 71", !;k) are used, i.e.,

8

~=~ Na(e, n", !;k)~~
a~1

8

71=~ Na(e, r/" !;k)r;~
a==l

(12)

Where ~~, r;~, and !;}; are the coordinates of the

where d is the global displacement vector, and K
and F are the global stiffness matrix and force

vector, respectively. In Eq, (13), the global stiff­

ness matrix K is expressed by the element stiffness

matrix K" and the transformation matrix G e

from global to off-axis(element) coordinates

shown in Fig. 4.

K '£( GeJT src:
e;;;c 1

m in Eq. (14) indicates the number of the total
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elements.

The derivative of the displacement d with

respecct to the design variables (jk(i= 1,2, ,

b) are calculated using Eq. (13) where F is

independent of 0" i, e.,

(15)

In order to evaluate Eq. (15), in each step of

optimization, the displacement d and stiffness

matrix K are calculated by solving Eq. (13). The

derivative of the stiffness with respect to the

design variables B, in Eq. (15) are calculated

using Eq, (9) and Eq. (14) where G e is indepen­

dent of B, i.e.,

(16)

(17)

cutting plane

(c) The element meshes used to analyze the ply

drop-off model

Fig. 5 Verification model for ply-drop-off element

l-cO.1 m w=0.002m h=0.OI02m
ply thickness =0.0001 27 m Po= 1.0 N

x

(a) Calculation of the tractions along the cutting

plane in the angle ply [0/90J40 laminate

(b) Ply drop-off model subjected to the tractions

along the cutting plane

P =Po sin ( Tt x / I )

sis, calculations were performed and compared

with the existing analytical solutions.

As a verification, the deflections and stresses of

0.1m long and 0.002m wide angle ply [0/90J n

4.1 Verification of finite element code
A three-dimensional finite element program

"HUSAP" with pre- and post-processor is devel­

oped based on the theory presented in Sec. 3. In
order to verify the finite element code and analy-

4. Numerieal Verifieation
of the Analysis

Since Eq. (16) is the same as the global stiffness

matrix K with Qk replaced with aQk/ aB, in the

element stiffness matrix, the assembly of the ele­

ment matrix in Eq. (16), hence, use the same

procedure as the conventional finite element

method. Using the transformation of the stiffness

matrix expressed in multiple-angles in Eq. (10),

where U, are independent of the ply angle 0"
aQk/ aB, in Eq. (16) can be calculated and expres­

sed in terms of the off-axis stiffness a:
Q;1=-4Q16

Q;2=4QZ6

Q;Z=2(Q16- QZ6)

Qi6=2(Q16- QZ6)

Q;6= Qll- Qlz-2Q66

Q;6= - Q22+Qlz+2Q66

Q;3= -2Q36

Q;3=2Q36

Q;6= Q13 - QZ3

Q~4=2Q45

Q~5= -2Q45

Q~5= Q55 - Q44

Q;3=0

In Eq. (17), the prime indicates the derivative of

o: with respect to B,.
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laminate are calculated. The laminate is subjected

to pressure p(x, y) = Po sin ~ x on the top surface

and simply supported at the ends as shown in Fig.

5(a). The number of sub-laminate n is chosen to

be 40, i.e., 80 plies total. The exact solutions of

displacements and stresses can be obtained using

the method presented by Pagano (1969). In order

to consider the ply-drop-off, a structure which has

a cutting plane is analyzed as shown in Fig. 5(b).

It has 40 plies in the right side. The applied loads

on the top surface were calculated from the above

exact solution along the corresponding cutting

plane. Hence, the displacements and stresses of

the structure with the cutting plane are the same

as the above exact solution of the structure with­

out the cutting plane. Three different element

numbers, i.e., 40 (case I), 10 (case 2) and 5 (case

3) are considered through the thickness for FEA

using the ply-drop-off elements. The considered

numbers of elements in x and y-direction are 20
and I, respectively. The displacement d; and

stress Ox at the bottom surface are calculated and

compared with the exact solution as shown in

16 "
10 -II)

2{)

'4

g 12

I
.io ~to
··to ~

~
." -60 0

~ ~
.~ -80 '?

2

~ -100

-2 -120

0.02 0.04 0.06 0.08 0.1

x(m)

Fig. 6 Comparision of the numerical calculations and
the exact solutions

Fig. 6. The required node numbers, computing

time and accuracy for each case are also summar­

ized in Table I.

As shown in Fig. 6, and Table I, the calculated

F,.., 1 kl\/m

,

''L:x (on- axis)

e x (off-axis)

all damped at x = 0

Layup [(8 1/8 2ho\}s

ply thickness 0;: 0.00025 rn

(a) Cantilevered plate subjected to the uniformly
distributed end loads

(xlO- 4 )

50 20

40 18

30 16
~

20 14 .§.

'" -c.,
;;;~

bD 10 12 E.,
.dz3- o

E
'" 10

.,
o 0 o-;;, '"c: ~'"0.-10 8 'i3
" -;;;»
'" .g-l -20 6 t;

>
-30 4

-40 2

-50 0
5 9 13 17 21

Iteration number

(b) The value of vertical displacement d, and ply
angles HI, H2 with respect to the Iteration
numbers

Fig. 7 Verification model and numerical results for
design sensitivity analysis

error

3.12%

4.01%

4.01%

max. stress
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-108

-108
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-112.5-=~--+l·~I~~-~-: -:=-=
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1:10.09 IAE-IO 2.79%
-----~_.._._.._--- _._...._----_. __.... __.- - -----, ------------

no. of

Comparision of the numerical caculations and the exact solutions

- R----===c==o---.c. P. U. time .
of PC-486 __~ax: dtsp~~==ment_

(min: sec)' value error

Table 1
I I

I no. of [i
no. L nodes elements

~---- ~-- --
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Table 2 Material properties of stem, cement and bone components

Material unit nOO/976 Acrylic Cancellous Cortical

property (Graphite/Epoxy) cement bone bone

Exx GPa 176.00 2.07 0.3246 17.00
Eyy e- Ezz GPa 11.10 2.07 0.3246 17.00
Exy e-Exz GPa 7.65 0.90 i 0.1258 3.28

I

Eyz GPa 4.27 0.90 0.1258 3.64

Vxy=Vxz 0.3 0.19 0.29 0.46
Vyz 0.3 0.19 0.29 0.58

-

displacements and stresses using the multi-layered

ply-drop-off element are matching very well with

the exact solution. In addition, node numbers or

computing memory can be significantly saved

without sacrificing the accuracy by using the

ply-drop-off elements.

4.2 Verification of design sensitivity
analysis

In order to verify the design sensitivity analysis,

the optimal ply angles of the cantilevered laminat­

ed plate are searched using the verified finite

element code and the design sensitivity analysis.

The initial layup is taken as [( -50/50)208J8' and

the ply thickness is 0.00025m. The plate is

clamped at x=O and subjected to the uniformly

distributed and loads F= IkNyrn as shown in

Fig. 7(a), and the material properties of the com­

posites (T300/976) are shown in Table 2. The

cost function is the z-directional displacements at

the center of the free end.

As a result, the values of design variables (k 82

and the cost function dz are obtained and plotted

with respect to the iteration as shown Fig. 7(b).

The values of Or and O2 are, as expected, conver­

ged to zero degrees after about 20 iterations.

5. Results and Discussion

A numerical calculation is performed using the

developed finite element program together with

the optimization module developed by Vander­

plaats, 1985, where the design sensitivity is carried

out using Eqs.(13)-(17).

The total hip prosthesis of length 0.193m is

considered and the generated finite element

meshes are shown in Fig. I. The numbers of

generated nodes and elements are 1827 and 1440,

respectively. The node for minimizing the circum­

ferential displacement is selected at medial­

proximal interface between stem and cement as

indicated (A) in Fig. I. The composite material

used for the hip stem in this study is Graphite/

Epoxy Fiberite T300/976, and its material prop­

erties are shown in Table 2. The layup sequence

is chosen to be [( Or/ 02)nsJ S' where two indepen­

dent ply angles are considered and n indicates the

number of ply group. Acrylic cement and cancel­

lous bone are isotropic, and cortical bone is

assumed to the transversely isotropic as studied in

Huiskes (1991), Crowninshield, et. al. (1981) and

Vichnin, et. al. (1986). The material properties of

these cement and bone components are also

shown in Tale 2. The contact forces acting on the

head during the gait are ranging from 3 to 5 times

the body weight (Huiskes, 1991). As reported by

Crowninshield, et. al. (1981) and Davy, et. al.

(1988) in-plane and out-of-plane angles of the

force are ranging from 10 to 20 degrees and 0 to

35 degrees, respectively (Fig. 1). For a numerical

calculation, a force of 1,620 N corresponding to 3

times of 55kg person is, hence, applied to hip stem

model with in-plane angle 15 degrees and out-of­

plane angle 5 degrees, respectively (Fig. I).

The optimum ply angle is calculated using the

procedure explained in Fig. 2 with the initial

layup sequence [( 15/ 15):JsJS' The calculated val­

ues of circumferential displacement d, and ply

angles 0" 02 with respect to the iteration numbers

are shown in Fig. 8. The minimum circumferen-
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tial displacement and corresponding layup angles

are obtained as 1.98 X 1O-4 m and ~29.0. -31.0

degrees, respectively, at a iteration number 18

(Fig. 8). The optimal layup sequence in this study

to minimize the micromotions between stem and

bone can thus be written as [( - 29/ - 31):Jo,1, of

the total hip prosthesis considered. The deflection

curve of the layup seq uences [( - 29/- 31)"ssJ s is

Reference

compared with other layup sequences [(29/­

31)35,:5 and [(29/31)35sJs as shown in Fig. 9.

The result shows that the circumferential deflec­

tion of the composite hip stem subjected to not

only the vertical force but also the circumferential

force can be minimized using the unbalanced

layup sequence. In other words, the positive

deflection due to the circumferential component

of the force is offset by the negative deflection

caused by the unbalanced laminate subejcted to

the vertical component of the force. In this study,

the optimal ply angles of [( 01/ 02)ns]s an: searched

in order to minimize the displacement, but the

different optimal ply angles could be obtained

with the different angle sequences. The methods

for the shape and strength optimization as well as

the stiffness optimization can be also developed

for the three-dimensional structure of the laminat­

ed composite materials. Most importantly,

strength as well as the displacement of the struc­

ture can be also either a cost function or a con­

straint function. The disign sensitivity analysis

developed in this study should be then extended

to include the sensitivity of the stresses with

respect to the ply angles.
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APPENDIX: Transformation
of the Stiffness Matrix Q

and the off-axis strains can be also expressed

using a contracted notation

{c}={Cl1 clZ .033 2.023 2.013 2c1Z)T (A3)

={Cl CZ c3 c. c5 c6)T

The relationship between stresses and strains

are expressed as following

01 Q11 Q12 Q13 0 0 Q16 cl

02 QZl Q22 Q23 0 0 Q26 .02

03 Q31 Q32 Q33 0 0 Q36 .03
0 0 0 Q•• Q45 0

(A4)
04 c.

05 0 0 0 Q54 Q55 0 .05

06 Q61 Q62 Q63 0 0 QS6 .os

where Qij is obtained by transforming the on-axis

stiffness CL. Using 8 for sin 0 and c for cos 0, the

components of the off-axis stiffness Qij are

Ql1= 84 Q22 + C' Qll + 28Z
C

Z( QIZ + 2Q6~)

Q2Z=8'Q~1 + c' Q22+282C2(Q~~ +2 Q6~)

012=(8'-1- C')Q~+82C2( Q11 +Q22-4Q';;;)

Q6S= (c2 - 8 2)ZQ~~ + C282(Ql~ - 2 Q12 + Q22)

Q16 = S3c(Q~z - Q2Z +2Q~6)

-I- ('3S(Ql~ --Q1Z -2Q66)

Q26=S3c(~~- (;)IZ-2QS6)

+ c\'( ~;- Q22+ 2Q SS)

QI3=S2Qz; + Cf Q13

Q23 = SZ Q;~+ (,Z Q2:J

Q36=cs(Q;;- Q;;)
Q••= c 2 Q4~ + 8

zQ55

Q55=82Q~4 + C2Q5--;'

Q45=CS( Q55- Q~~)

Q33= Q33 (AS)

Eq. (AS) is expressed In multi-angles as in Eq.

(10) where U, are defined as

The contracted stress matrix in Eq. (A I) is arran­

ged as a column vector

The off-axis stresses can be expressed in com­

pact matrix form using symmetry of stresses and

contracted notation.

[

0 l1 012 013] [01 06 os]
[oJ = OZI Ozz OZ3 = 06 02 04

031 032 033 05 04 03

(A I)

(A2)

3-- 3~- 1-'1·­
UI=8 Q11 +8 Q2Z +'4 Q12 +2 QS6

1·- 1--
UZ=2 Q11 --T Q22

I -, I ~- I -- 1 ---
U, = -ff Q11 +8- Q22 -4 Ql2--2' Q66

1-- 1---,3-- 1--
U'=8 Q11 +8 Q22+'4 QI2--2 Q66

1 _. I -- I --- 1-­
US=8 o.. -I- -8 Q22-4 QI2+-:r (JGG

1--- I·-
Ue=2 Ql3+-2 Q23
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1-···· 1 ... -
[17 = 2 Q13-2 QZ3

1- 1-
[/8= 2 Q44 +2 Q55

I . -- 1--
U9=2 Q44 -2 Q55

U1O= Q33 (A6)


